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Tools and techniques for developing policies for
complex and uncertain systems
Steven C. Bankes*

RAND, 1700 Main Street, Santa Monica, CA 90407

Agent-based models (ABM) are examples of complex adaptive
systems, which can be characterized as those systems for which no
model less complex than the system itself can accurately predict in
detail how the system will behave at future times. Consequently,
the standard tools of policy analysis, based as they are on devising
policies that perform well on some best estimate model of the
system, cannot be reliably used for ABM. This paper argues that
policy analysis by using ABM requires an alternative approach to
decision theory. The general characteristics of such an approach are
described, and examples are provided of its application to policy
analysis.

Introduction: The Need for New Tools

Quantitative policy analysis depends on a portfolio of tools
that have been drawn from a variety of disciplines, including

game theory, economics, statistical decision theory, and opera-
tions research. These tools are rigorous and sophisticated and
have proven their value on a host of policy problems spanning
several decades of research. To date, however, there are few
good examples of the classical policy analysis tools being suc-
cessfully used for a complete policy analysis of a problem where
complexity and adaptation are central. Indeed, there are a
sufficient number of examples of misleading analyses resulting
from the naive application of these approaches to complex
systems and in particular to analyses based on agent-based
models (ABM) to suggest that there may be something funda-
mentally different about ABM that requires new tools.

This paper argues that the central feature of the classical tools
that leads to difficulty is the identification of a single ‘‘best’’
model of the system of interest, followed by the use of that model
to develop a policy that is ‘‘best’’ in the context of that model.
Typically, the best policy is one that optimizes some cost or utility
function for that model. Whereas this metatechnique is so
ubiquitous that it may seem unavoidable, its justification is
difficult when applied to complex systems. Any system whose
behavior is well captured by some model cannot be complex,
under most definitions of complexity. This concept is best seen
by realizing that complex systems have perpetual novelty among
their important attributes. Possession of an accurate model
insures no surprises, and hence, no complexity. Because the
usefulness of ABM to social science lies in ABM’s capacity to
model the complexity of social systems, this general problem
applies directly to the use of agent-based models.

Whereas there may be problems for which ABMs can be
devised that do accurately predict system behavior, most agent
based models of social systems will not have that property. For
those problems for which no model can accurately predict the
details of system behavior, approaches to policy analysis based
on using some model to forecast system behavior will be
inappropriate. For such problems, it will still be important to
craft models that best use available information. But, no matter
how well a model is crafted for such a problem, treating it as a
forecast engine will lead to faulty reasoning. Policies that are
optimal for some best estimate model may underperform very

badly in some regimes of behavior of the actual system not
captured by the model. That is to say, optimal policies for best
estimate models may not be robust across the range of possible
behaviors of the complex adaptive social system they represent.
More subtly, for complex adaptive systems, single models will
frequently fail to exploit important knowledge that is available
that could be used to help craft good policies. This very
important fact is a consequence of yet another aspect of complex
adaptive systems, known as ‘‘deep uncertainty.’’

Deep Uncertainty
Divergence between the detailed behavior of systems and the
predictions of best estimate models is not unique to complex
adaptive systems. This difference is known elsewhere as ‘‘un-
certainty,’’ and is addressed by using the tools of probability,
statistics, and statistical decision theory. If the knowledge and
information that need to be represented can be captured by
probability distributions, then the tools of statistical modeling
and analysis are adequate to meet that challenge posed by
complex systems, and there is no need for new concepts or new
tools.

There are phenomena that are prosaically described as un-
certain that are not well modeled by the tools of probability and
statistics. Although controversial, this pragmatic reality has been
recognized for some time (1, 2). The term I use to describe such
phenomena is ‘‘deep uncertainty.’’† The view of most statisti-
cians is that no such thing as deep uncertainty exists. Decades of
practical experience suggests otherwise.

Deep uncertainty is important not because some yet to be
discovered theorem invalidates or extends probability and sta-
tistics in some fundamental way. Instead, deep uncertainty is the
result of pragmatic limitations in our ability to use the repre-
sentational formalisms of statistical decision theory to express all
that we know about complex adaptive systems and their associ-
ated policy problems. The familiar tools are adequate for
complicated systems that are relatively predictable (i.e., for
computer-assisted design) or are uncertain but relatively simple
(as in the relatively low dimensionality of most statistical mod-
els). But there are huge pragmatic barriers in actually applying
these formalisms to problems that combine complexity with
uncertainty (especially that very nonlinear source of uncertainty
created by interacting adaptive agents). It is for these problems—
those related to complex adaptive systems—that new tools are
most needed.

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Adaptive Agents, Intelligence, and Emergent Human Organization: Capturing
Complexity through Agent-Based Modeling,’’ held October 4–6, 2001, at the Arnold and
Mabel Beckman Center of the National Academies of Science and Engineering in Irvine, CA.

Abbreviation: ABM, agent-based model.

*E-mail: Steven�Bankes@rand.org.

†The first use of the term ‘‘Deep Uncertainty’’ that I am aware of was by Nobel Prize winner
Kenneth Arrow, in a talk delivered at the Pew Center Workshop on the Economics and
Integrated Assessment of Climate Change, July 1999.
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There are several reasons that the tools of probability and
statistics that can in principle represent all knowledge about any
problem do not suffice for many real problems. These reasons
can be grouped into two main categories. First, the representa-
tions of probability and statistics often provide a poor ontology
for capturing our knowledge about complex and adaptive sys-
tems, requiring that different representations be used if we are
to use all our knowledge. This ontological deficiency is especially
obvious for ABM, where dynamic agent generation and heter-
ogeneity make representing the ensemble of possible agent
model states through joint probability distributions especially
challenging.

A second challenge to the use of the classical methods of
statistical uncertainty analysis is that the assumptions that
motivate the representational choices of probability and statis-
tics are in conflict with the pragmatics of many policy contexts.
Rather than a single monolithic decision maker, with coherent
values and an explicitly describable state of knowledge, policy
problems often present communities of stake holders, with
values that are incommensurate and group knowledge that is
very difficult to elicit and capture in a single probabilistic
structure. These pragmatic challenges frequently require that
something in addition to probabilistic approaches be used.

Fortunately, just as computational methods such as ABM
make the problems of uncertainty analysis more vexing, inno-
vations based on computational modeling provide an alternative
to the available mathematical tools for meeting this challenge
(3). In the remainder of this paper I will present several of the
innovations that I believe are most fundamental and important.
I have little doubt that a much longer list will be developed in the
coming decade.

Reasoning with Ensembles
Best estimate models are constructed by using available knowl-
edge about the system of interest. When such a model does not
predict the behavior of a system, it is often true that there is
additional information available about the system that was not
used in constructing the model. Often, more information can be
captured in an ensemble of alternative plausible models than can
be captured by any individual model. Indeed, probability distri-
butions are a representation of just such an ensemble. But, the
restrictions that are imposed by the mathematical formalisms of
probability theory can in computational modeling be avoided by
a combination of explicit enumeration of finite lists of alternative
options and inductive reasoning about the properties of infinite
ensembles represented with generative techniques. Computa-
tional tools enabling facile manipulation of ensembles of models
provide an important approach to dealing with the ontology of
deep uncertainty. Unexpectedly (by me at least), they also have
provided an important foundation for addressing the pragmatics
of deep uncertainty as well. This computational approach,
referred to in some literatures as exploratory modeling or
exploratory analysis (3), allows human analysts and decision
makers to be interactively involved in selecting among alterna-
tive options during the course of an analysis. Mathematical
frameworks like that of statistical decision theory require all
knowledge to be acquired before the analysis can begin, which
translates into a major barrier to using the qualitative and tacit
knowledge held by humans and their organizations. Exploratory
modeling allows such knowledge to emerge and be used through-
out the course of an iterative analytic process. Consequently, it
can provide a bridge for moving from deductive analysis of
closed systems, to interactive analytic support for inductive
reasoning about open systems where the contextual pragmatic
knowledge possessed by users can be integrated with quantita-
tive data residing in the computer (see ref. 3 and www.evolving-
logic.com).

Technology for manipulating ensembles can be applied to
representing ensembles of alternative models, and also to en-
sembles of plausible futures, and for ensembles of candi-
date policies. This technology is used for all of the following
techniques.

Policy Landscapes
Policy analysis of complex systems will be challenging or impos-
sible if agent-based models are used as closed systems to produce
point forecasts, expressed either as a single vector of outputs, or
a probability distribution over such vectors. For complex adap-
tive systems, especially those that are open, no such modeling
exercise can be viewed as final and definitive. Instead, any
calculation, including those that integrate over probabilistic
representations, must be subjected to robustness testing. That is
to say, the impact on policy conclusions of alternative modeling
choices must be examined. The goal is to discover a policy
recommendation that holds for all plausible models of the
problem, or which can be demonstrated to be superior to all
other options across this range of plausible models. Frequently,
and especially in the face of deep uncertainty, alternative
assumptions can lead to different outcomes. Model results can
quickly provoke proposed changes to model architecture that
might lead to different policy recommendations. Rather than
hide from this common situation, we can exploit intermediate
model outcomes to deepen our knowledge of the problem and
exploit the not yet used tacit knowledge of human experts.
Graphical depictions of the pattern of outcomes across a range
of alternative assumptions can provide a significant improve-
ment over point predictions, even those with accompanying
sensitivity analysis.

Fig. 1 motivates the use of this technique. This example is
based on a model developed by a major oil company to forecast
the price of oil. The model used contained a great deal of class
knowledge that could be useful in making a variety of important
decisions, such as whether the company should invest in the
construction of a new refinery. However, when the model is used
as a prediction engine, very little benefit is derived, as Fig. 1 A
demonstrates. A single best estimate price path provides little
help in making any decision, because both the model builder and
the consumers of the analysis know that this ‘‘prediction’’ is
nearly certain not to be correct. Indeed, this best estimate, made

Fig. 1. Different uses for a model of oil prices. (A) Using the model as a
prediction engine provides little benefit. (B) A Monte Carlo analysis provides
partial indication of degree of uncertainties. (C) Exploration over structural
uncertainties reveals there is additional real world uncertainty not captured in
the uncertainty analysis. (D) A policy region analysis can be illuminating, even
when uncertainties make forecasts unreliable.
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in 1997, can now be seen retrospectively to have matched the
actual price of oil very poorly indeed. The situation would be no
different if we did a retrospective of the predictions of combat
models of the casualties in the Gulf War, or macroeconomic
model prediction of gross domestic product (GDP) for more
than a few quarters into the future.

Fig. 1B presents what typically results from a Monte Carlo
analysis, where probabilities are introduced to represent uncer-
tainty and stochasticity. The range of plausible behavior pro-
vided by this graphic is a clear improvement over point predic-
tion. However, this output still greatly underestimates the actual
uncertainty facing the decision maker. This Monte Carlo simu-
lation was done by varying those quantitative parameters for
which probabilities could be easily estimated. For this problem
(and others characterized by deep uncertainty) there are a host
of structural or model uncertainties that are much more difficult
to suggest good probability distributions for. Similarly, a variety
of exogenous events could occur that would greatly affect the
price of oil. Fig. 1C shows the result of one such excursion, where
oil fields in former Soviet republics are assumed to come on the
market more rapidly than was estimated in the baseline model.
This is but an example of such a plausible alternative future.
Others include a collapse in third world economies, and along
with it the demand for oil, or a revolution in the Middle East that
interrupted the production of oil.

All of these issues could, in theory, be handled by the
probabilistic machinery of statistical modeling. However, the
pragmatics of very complex real world systems is such that this
method is essentially never done for real problems and real
models. Instead, invariably the rhetoric of prediction (including
probabilistic prediction) gets used, even when these predictions
are suspect. Curves such as Fig. 1C are seldom produced, and the
set of all such possible graphs is seldom considered, because the
conclusion is readily drawn that we have little idea what the price
of oil will be in 10 years. And without some sort of forecast, what
use is a model of the price of oil? For that matter, what use is
any model of a complex system whose predictions do not come
true?

One simple answer is provided in Fig. 1D. Whereas a wide
range of oil prices is possible, there is structure in the ensemble
of plausible scenarios that generates this price range. And that
structure, properly organized and graphically portrayed, can
support the reasoning of the analyst or decision maker. In Fig.
1D is portrayed the rate of return of a notional investment whose
performance is tied to the price of oil. This performance is color
coded based on the natural nonlinearity of the corporate stan-
dard hurdle rate for viewing investments as attractive. This
two-dimensional picture is a slice through a multidimensional
landscape of possible excursions. The position and orientation of

the slice can be interactively controlled by the user, allowing the
pattern of outcomes across a multidimensional scenario space to
be examined.

Level Sets of Satisfactory Solutions
Just as no single model can capture all of the knowledge that may
be available for a complex adaptive system, no single policy
recommendation, calculated to optimize a cost function on that
model does either. And for policy analysis, a policy recommen-
dation is not just a mechanical control, it conveys information
that is then used by human beings.

An alternative to using agent-based models to recommend
single policies is to provide decision makers with ensembles of
policy options all of which perform satisfactorily. Such an
ensemble can be a level set of policies that perform better than
some threshold on a cost function. This approach can provide
much better support for satisfying decision making strategies
that are commonly used by real decision makers (4). An example
is shown in Fig. 2. This figure is drawn from work done for the
U.S. Air Force on weapons procurement (5). The task is to select
a portfolio of deep attack weapons to be procured in preparation
for some future conflict. What is often done is to use a high
resolution simulation of such a conflict, and to search for the
optimum portfolio of weapons to achieve combat goals in that
simulation. In this example, the model CTEM was used, and the
resulting optimum portfolio was a mix of three weapon systems,
shown as the white circle at the bottom of the diagram. This
single point provides poor support for humans who have knowl-
edge that the model does not, to combine their insight and
contextual knowledge with the outputs of the model. Much
better information is provided by the level set of weapons mixes
that comes within 5% of the performance of that optimal
portfolio. The resulting boomerang shaped level set clearly
shows the complementarity of the two weapons types whose
numbers make up the axes of the graph.

Contrast the level set of satisfactory policies to the ‘‘take it or
leave it’’ single optimal policy recommendation. Note that the
level set provides experts with much more information about the
pattern of model performance as policies vary. Using this format
for the output of an analysis provides decision makers an
opportunity to exploit the qualitative contextual knowledge they
possess that is not incorporated into the model in picking a final
policy option out of the ensemble of alternatives.

Robust Strategies
A level set provides much more information than does a single
optimal policy. Combining this idea with that of policy land-
scapes, the computer can be used to discover policies that are
robust across multiple scenarios or alternative models, and to
identify and graphically depict sets of policies with satisfactory
robustness.

One way to do this process is to intersect a finite number of
level sets created with different models or different scenarios or
assumptions. One can also calculate a robustness metric, such
as regret (1), and then create landscapes and level sets show-
ing what policy options are satisfactorily robust under what
assumptions.

An example of such a diagram is shown in Fig. 3. This figure
is drawn from an unpublished study of e-commerce strategy for
a company modeled loosely on the Intuit Corporation. In Fig. 3,
the performance of four alternative product strategies is com-
pared across varying assumptions about potential size and
growth rates in the markets for shrink wrapped software and
on-line transactions. The larger figure shows the identity of the
best strategy across this landscape of possible cases. (One of the
four strategies turns out to never be the best strategy.) Various
robustness criteria (for example, minimizing the maximum re-
gret) can be used to recommend one of the candidate strategies.

Fig. 2. A level set of satisfactory policies provides significantly more utility
than information about the single “optimal” policy in this model of military
combat, labeled here “original solution.”
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For this example, the strategy of network deployment, pricing for
early revenue (shown here in green) is typically recommended
by such criteria, for reasons that can be discerned by examining
the Inset line graph. However, as the larger landscape diagram
reveals, there is a region in scenario space where the alternative
strategy of net deployment and pricing for market share is
superior. By examining visualizations such as this one, users can
be prompted to enlarge the set of options by constructing
composites that combine the best elements of component strat-
egies that are good over limited ranges of scenarios. One option
for doing this method is to construct adaptive strategies that
change in response to improved information that will become
available in the future. Because pricing strategies can be selected
after product designs are fixed, such adaptive strategies are a
possible candidate for this example.

Adaptive Strategies
Successful policies for complex, adaptive systems will typically
need to be adaptive themselves. But, relying on optimization to
craft policies based on the forecasts of single models results in
static policies that always make the correct move for that best
estimate model. To test adaptive policies, a challenge set of
possible future situations is needed, and the ensembles of
alternative models being used for all of the previous techniques
are perfect for this. Similarly, adaptive policies need to be
evaluated on their robustness properties, not on their perfor-
mance on any single case. So, all of the previous tools and

techniques serve to lay a foundation on which adaptive policies
can be crafted. Further, the computer can be used to find
important scenarios by searching through such ensembles, in
particular to find cases that break a proposed policy. Such worst
cases can stimulate users to modify the range of possible policies
to allow for combinations that hedge against these possibilities.
This strategy can allow users to iterate with the computer to
gradually evolve policy schemas that have particular policy
instances with desirable properties.

This approach has been successfully used in several studies to
make concrete policy recommendations for deeply uncertain
problems by using very nonlinear simulations including agent-
based (6–9).

Conclusions
Whereas complex adaptive systems and agent-based models of
them originally seemed to pose a problem for policy analysis,
they may also present an opportunity. The failure of computer-
ized decision support systems to provide significant help for most
problems is striking when contrasted with the impact of com-
puter technology in other spheres. Looking back, we can now see
that most policy problems involve complex and adaptive systems,
and that for those problems the classical approaches of predictive
modeling and optimization that have been used in decision
support software are not appropriate. The next stage in the
development of complexity science could well include a refor-
mulation of decision theory and the emergence of the first really
useful computer-assisted reasoning for policy analysis.
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Fig. 3. Performance of four alternative product strategies compared by using a model of an electronic commerce market. This figure demonstrates how an
exploration of patterns of outcome across possible actions can provide more information than simply optimizing robustness (through, for example, minimizing
the maximum regret). In this case, for example, examination of this diagram could stimulate investigation of new options for adaptively combining the two
product strategies, “Net, Revenue Best” and “Net, Market Share Best.”
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